

Efficiency - Why Should I Care?

- You must know your efficiency in order to know how much grain you need to use to hit a specific OG target at a particular wort volume
- Higher efficiency requires less grain for the same OG
 - Too much grain → OG over target
 - Too little grain → OG under target

What is Efficiency?

- Equation gives fractional efficiency
- Multiplying by 100 gives percent efficiency

Efficiency Metrics

```
Mash \, Efficiency = \frac{Extract \, \text{in Boil Kettle}}{Total \, Potential \, Extract}
Conversion \, Efficiency = \frac{Extract \, \text{in Mash}}{Total \, Potential \, Extract}
Lauter \, Efficiency = \frac{Extract \, \text{in Boil Kettle}}{Extract \, \text{in Mash}}
Mash \, Efficiency = Conversion \, Efficiency \times \, Lauter \, Efficiency
```

 $Brewhouse Efficiency = \frac{Extract in Fermenter}{Total Potential Extract}$

Brewhouse Efficiency = Mash Efficiency \times Fermenter Volume Boil Kettle Volume

Grain Extract Potential

- Given on malt analysis sheets as percentage for fine grind, dry basis
 - Real malt typically contains ~4% moisture, so "as is" potential is ~96% of dry basis
 - Most brewing software does not correct for moisture
- SG potential is commonly used by homebrewers
 - -SG that results from 1 lb making 1 gal of wort
 - SG potential = 1 + (%Potential * 46.2)/1000
 - -80% potential extract = 1.037 SG potential

Efficiency using Points

- Malt potential extract points/lb
 - Pts/lb = 1000 * (SG Potential 1)
 - -1.037 potential = 37 pts/lb
- Potential points for each grain
 - Potential pts = Grain weight * pts/lb
 - 10 lb @ 1.037 = 370 pts
- Total potential pts = Sum of pts for all grains

Efficiency using Points

- Wort actual extract points/gal
 - -Pts/gal = 1000 * (SG 1)
 - -1.054 wort SG = 54 pts/gal
- Total actual wort points
 - Total wort pts = Wort volume * pts/gal
 - 5 gal @ 1.054 = 270 pts

Efficiency using Points

- Mash efficiency example
 - 10 lbs 2-row at 1.037 potential for 370 total potential pts
 - 5 gal post boil at 1.054 SG for 270 total wort pts
 - Mash Eff = 270 / 370 = .73 or 73%

Calculation Accuracy

- Sources of error
 - Grain weight errors
 - Grain moisture content errors
 - Grain extract potential errors
 - SG measurement errors
 - Volume measurement errors
- Efficiency calculations are only accurate to ±3% 4%
- Sanity check: total pre-boil points should equal total post-biol points
 - Pre-boil vol * pts/gal = post-boil vol * pts/gal ?

Recipe Scaling

- Target is 5.5 gal post-boil @ OG of 1.065
- Grain bill has average 35 pts/lb
- Typical mash efficiency = 72%
- Target pts = 5.5 * 65 = 357.5
- Potential pts needed = 357.5 / 0.72 = 496.5
- Grain needed = 496.5 / 35 = 14.2 lb

What Affects Efficiency

- Conversion efficiency affected by:
 - Crush size Larger grits take longer to convert completely
 - Mash time & temp
- Lauter efficiency affected by:
 - Sparge method fly, batch, none
 - Grain absorption rate (batch)
 - Undrainable MLT volume (batch)
- Brewhouse efficiency affected by:
 - Everything above
 - Volume left behind in boil kettle

Effect of Grain Bill Size

Larger grain bills reduce lauter efficiency

